

iZS-306 Online Turbidity Sensor User Manual

Yantai Chemins Instrument Co.,Ltd

Hangzhou Chemins Sensing Technology Co., Ltd.

en.www.chemins-tech.com

Tel: +86 535-3463801/571-89870583

Add: No.96 Chushan Dong Road, Zhaoyuan City, Shandong Province No 908, 17 Building, Singapore Science Park, Qiantang District, Hangzhou City, Zhejiang Province

User Notes

- Before use please read this description, and save it for reference.
- Please follow this manual procedures and precautions.
- Upon receipt of the instrument, carefully open the package, whether viewing instruments and accessories due to shipping damage, if any damage is found, immediately notify the manufacturers and distributors, and retain the packaging material for return processing.
- When the instrument malfunction, do not repair itself, please contact the manufacturer's after-sales department.

Content

User	⁻ Notes	2
Ι.Ι	The working principle	4
II .TI	he technical specifications and performance	4
1.	Technical parameter	4
2.	Dimensions	5
Ⅲ.Ir	nstallation and electrical connection	5
1.	Installation	5
2.	Electrical connections	5
IV. №	Naintenance and repair	5
1.	Maintenance procedures and methods	5
2.	Calibration of sensors	6
3.	Frequently asked questions	6
V.C	Quality and service	6
1.	Quality assurance	6
2.	Accessories and spare parts	7
3.	Service commitment	7
Арре	endix data communications	7

I .Working principle

iZS-306 integral line turbidity sensor design uses the principle of scattered light produced by turbidity measurement. When the one beam is incident on water samples, water samples since the light scattering turbidity substance, by measuring the scattered light intensity of the incident light in the vertical direction, and alignment of the internal calibration value, thereby calculating the turbid water sample degree, the final processed output linearized value.

- 90 ° angle scattered light principle, built-in temperature sensor
- Supports RS-485, Modbus / RTUprotocol
- Fiber structure, external light anti-interference ability
- Infrared LED light source, high stability
- IP68 protection class. The water depth is within 20 meters
- Convenient, fast, stable, easy to maintain

II .Technical performance and specifications

Model	iZS-306			
Measuring principle	Light scattering method			
Measuring range	0~100NTUor 0~1000NTU			
Resolution	0.01NTU,0.1℃			
Accuracy	±3% or \leq ±3NTU, is subject to the larger, ±0.5 $^\circ \! \mathbb{C}$			
Calibration methods	Two-point calibration			
Temperature compensation	Automatic temperature compensation (Pt1000)			
output method	RS-485 (Modbus / RTU)			
Working conditions	0∼50 °C, <0.2MPa			
Storage temperature	-5 ~ 65 ℃			
Mounting	Immersion installation			
Power	0.1W@12V			
Power supply	12~24VDC			

1. Technical parameter

Ducto attant alega	1000
Protection class	IP68

2.Dimensions

Note: The sensor joint is M16-5 waterproof joint.

III.Installation and electrical connection

1. Installation

Installation distance requirements: keep 5cm above the side wall and 10cm above the bottom.

2. Electrical connection

The cable is 4 - core double - stranded shielding wire, the line order definition:

- a)Red line power line (12~ 24VDC)
- b) Black line ground (GND)
- c) blue line 485A
- d) white line 485B

After wiring is completed, it should be carefully checked to avoid incorrect connections before powering up.

Cable specification: Considering that the cable is immersed in water (including sea water) for a long time or exposed to the air, all the wiring points are required to do waterproof treatment, the user cable should has certain corrosion resistance.

$\ensuremath{IV}\xspace$.Care and maintenance

1. Maintenance procedures and methods

1.1Maintenance schedule

Maintenance schedule The cleanliness of the measurement window is very important to maintain accurate readings.

Maintenance task	Recommended maintenance frequency
Calibrate sensors (if required by the	According to the maintenance schedule
competent authority)	required by the competent department
Calibrate sensors (if required by the competent authority))	According to the maintenance required by the competent dep

1.2Maintenance method

• Sensor outer surface: clean the outer surface of the sensor with tap water, if there is still debris residue, wipe with wet soft cloth, for some stubborn dirt, you can add some household washing liquid to tap water to clean.

• Check the cable of the sensor: the cable should not be tightened when it is working properly, otherwise it is easy to break the wire inside the cable and cause the sensor to fail to work properly.

• Check the measuring window of the sensor is dirty or not and the cleaning brush is normal or not.

1.3 Attention

The probe contains sensitive optical and electronic components. Ensure that the probe is not subjected to violent mechanical impact. There is no part of the probe that requires user maintenance.

2.Calibration of sensors

a) Zero calibration: take proper amount of zero turbidity solution with large beaker, put the sensor vertically in the solution, the front end of the sensor is at least 10 cm from the bottom of the beaker, and the zero calibration will be carried out after the value is stabilized for 3-5 minutes. The instructions refer to the appendix.

b) Slope calibration: the sensor probe is placed in the standard solution, the front end of the sensor is at least 10 cm from the bottom of the beaker, and the slope calibration is carried out after 3 -5 minutes of numerical stability. The instructions refer to the appendix.

3.Frequently asked questions

Wrong	Probable cause	Resolvent
The operating interface cannot connect or does not display the measurement	The measured value is too high, too low, or the numerical value remains unstable.	Reconnect the controller and cable.
results	Cable failure	Please contact us.

The measured value is too		
high, too low, or the	The sensor window is attached	Clean the window surface of
numerical value remains	to the external object.	the sensor.
unstable.		

V.Quality and servings

1. Quality assurance

• The quality inspection department has standardized inspection procedures, advanced and perfect testing equipment and means, and strictly in accordance with the regulations, 72 hours of aging experiments and stability tests on the products, and does not allow a substandard product to leave the factory.

• The receiving party directly returns the batch of products with a non-conformity rate of 2%, and all the costs incurred are borne by the supplier. The reference standard refers to the product description provided by the supplier.

• Guarantee the quantity of goods and the speed of shipment.

2. Accessories and spare parts

This product includes:

- Sensor 1
- Manual 1
- Certificate 1

3. After sales service commitment

The company provides local after-sales service within one year from the date of sale, but does not include damage caused by improper use. If repair or adjustment is required, please return it, but the shipping cost must be conceited. Damaged on the way, the company will repair the damage of the instrument for free.

Appendix data communication

1. Data format

Modbus communication default data format is 9600, n, 8, 1 (baud rate 9600bps, 1 start bit, 8 data bits, no check, 1 stop bit).

2. Information frame format (xx represents one byte)

a)	Read dat	a instru	uction fram	e								
	06	03	хх	xx x		х	x	хх		XX	Х	х
Ad	ldress	FC	Register	start add	lress	Numbe	er of	regist	ers	CRC ch (low byte	eck es in	code front)
b)	Read dat	a respo	onse frame									
	06	03	ХХ		ХХ	хх		ХХ	хх			
Ad	ldress	FC	Number o	of bytes	Respor	nse data	a (CRC cł	neck	code (low b	ytes	s in front)
c)	Write da	ta instr	uction fran	ne								
	06	06	XX	хх	хх	xx		хх	xx			
Ad	ldress	FC	Register a	ddress	Read-	in data	CI	RC ch	eck c	code (low by	/tes	in front)
d)	Data res	ponse f	rame									
	06	06	ХХ	хх	хх	xx		хх	xx			
Ad	ldress	FC	Register a	ddress	Read	-in data	n C	CRC ch	neck	code (low b	ytes	in front)

3. Register address

Register Name		Explanation	Register	Interview
Address		Four double-byte integers.	number	method
40001	Measured	measured, measured decimal,		
40001	value+tempera	temperature decimal places,		
(0x0000)	ture	respectively, measured,	4 (8 bytes)	Read
		decimal places.		
		Calibration in zero turbidity		
44007		water, write data is 0, read		
(0x1000)	Zero	data is zero offset. (It can also	1 (2 bytes)	Write/Read
(001000)	calibration	be calibrated in the turbidity		
		standard solution of 0-10NTU,		

		and the calibration method is		
		calibrated with reference to		
		the slope.)		
		Calibrated in the known		
		standard solution (20% full		
44101	Slope	range-full range), the written		
(0x1004)	calibration	data is the actual value of the	1 (2 bytes)	Write/ Read
		standard solution × 10, and		
		the read data is the slope		
		value × 1000.		
		In the calibration solution,		
	Temperature Calibration	write data is the actual		
44113		temperature value × 10; read	1 (2 bytes)	Write/Read
(0x1010)		data to the offset		
		temperature calibration × 10.		
48195		The default is 6 and writes		
(0x2002)	Sensor address	data range 1-127	1 (2 bytes)	Write/Read
		The calibration value restores		
		the default value, and the		
48225	Reset Sensor	write data is 0. Note that the	1 (2 bytes)	Write
(0x2020)		sensor needs to be calibrated		
		again after resetting.		

4. Command sample

a) Start measurement instructions

Function: Obtain the turbidity value and temperature of the measuring probe; the unit of temperature is Celsius, and the unit of turbidity is NTU.

Request frame: 06 03 00 00 00 04 45 BE

Response frame: 06 03 08 01 02 00 01 00 B0 00 01 90 48

Example of reading:

Turbidity value	Temperature values
01 02 00 01	00 B0 00 01

For example: turbidity value 01 02 means hexadecimal reading turbidity value, 00 01 means

turbidity value with 1 decimal point, converted to decimal value is 25.8.

The temperature value 00 B0 represents the hexadecimal reading temperature value, and 00 01 represents the temperature value with a decimal point converted to a decimal value of 17.6.

b) Calibration instructions

Zero calibration

Function: Set the zero calibration value of the turbidity of the sensor; here the zero calibration is performed in zero turbidity water;

Request frame: 06 06 10 00 00 00 8C BD

Response frame: 06 06 10 00 00 00 8C BD

Slope calibration

Function: Set the slope calibration value of the sensor turbidity; here the slope value is based on the actual standard solution value x10, with 1000NTU as an example for calibration;

Request frame: 06 06 10 04 27 10 D7 40

Response frame: 06 06 10 04 27 10 D7 40

c) Set the device ID address:

Role: set the MODBUS device address of the electrode;

Change the device address 06 to 01. The example is as follows

Request frame: 06 06 20 02 00 01 E3 BD

Response frame: 06 06 20 02 00 01 E3 BD

5. Error response

If the sensor does not execute the host command correctly, it will return the following format information:

Definition	Address	Function code	Code	CRC check
Data	ADDR	COM + 80H	хх	CRC 16
Number of bytes	1	1	1	2

a) CODE: 01 - Function code error

03 - Data error

b) COM: Function code received